Distributed stochastic optimization for deep learning
نویسنده
چکیده
We study the problem of how to distribute the training of large-scale deep learning models in the parallel computing environment. We propose a new distributed stochastic optimization method called Elastic Averaging SGD (EASGD). We analyze the convergence rate of the EASGD method in the synchronous scenario and compare its stability condition with the existing ADMM method in the round-robin scheme. An asynchronous and momentum variant of the EASGD method is applied to train deep convolutional neural networks for image classification on the CIFAR and ImageNet datasets. Our approach accelerates the training and furthermore achieves better test accuracy. It also requires a much smaller amount of communication than other common baseline approaches such as the DOWNPOUR method. We then investigate the limit in speedup of the initial and the asymptotic phase of the mini-batch SGD, the momentum SGD, and the EASGD methods. We find that the spread of the input data distribution has a big impact on their initial convergence rate and stability region. We also find a surprising connection between the momentum SGD and the EASGD method with a negative moving average rate. A non-convex case is also studied to understand when EASGD can get trapped by a saddle point. Finally, we scale up the EASGD method by using a tree structured network topology. We show empirically its advantage and challenge. We also establish a connection between the EASGD and the DOWNPOUR method with the classical Jacobi and the Gauss-Seidel method, thus unifying a class of distributed stochastic optimization methods.
منابع مشابه
A Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملAccelerating Sgd for Distributed Deep- Learning Using Approximted Hessian Matrix
We introduce a novel method to compute a rank m approximation of the inverse of the Hessian matrix in the distributed regime. By leveraging the differences in gradients and parameters of multiple Workers, we are able to efficiently implement a distributed approximation of the Newton-Raphson method. We also present preliminary results which underline advantages and challenges of secondorder meth...
متن کاملAccelerating SGD for Distributed Deep-Learning Using Approximated Hessian Matrix
We introduce a novel method to compute a rank m approximation of the inverse of the Hessian matrix in the distributed regime. By leveraging the differences in gradients and parameters of multiple Workers, we are able to efficiently implement a distributed approximation of the Newton-Raphson method. We also present preliminary results which underline advantages and challenges of secondorder meth...
متن کاملRevisiting Distributed Synchronous SGD
Distributed training of deep learning models on large-scale training data is typically conducted with asynchronous stochastic optimization to maximize the rate of updates, at the cost of additional noise introduced from asynchrony. In contrast, the synchronous approach is often thought to be impractical due to idle time wasted on waiting for straggling workers. We revisit these conventional bel...
متن کامل